

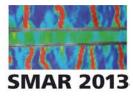

# Wind Comfort Assessment of a Tall Building According to Various Structural Codes

Samet TOZAN<sup>1</sup>, Kadir GÜLER<sup>2</sup>, Barış ERKUŞ<sup>3</sup>

<sup>1</sup> M.S. Student, ITU, Faculty of Civil Eng. 34469 Maslak, Istanbul, Turkey, <u>sametozan@itu.edu.tr</u>

<sup>2</sup> Prof. Dr., ITU Faculty of Civil Eng. 34469 Maslak, Istanbul, Turkey, kguler@itu.edu.tr

<sup>3</sup> Assist. Prof. Dr., ITU Faculty of Civil Eng. 34469 Maslak, Istanbul, Turkey, <u>Baris.Erkus@itu.edu.tr</u>


ABSTRACT: In this study, comfort condition of a tall building under wind excitation is assessed using various structural codes. A 31-story and 116.6 m tall office building is considered in Istanbul, Turkey. Typical floor is approximately 30m-by-35m in dimensions and symmetrical in plan in both major directions. The lateral system of the building is a dual system of shear walls and moment frames, which typical for tall buildings in Turkey. First, the building is designed according to 2007 Turkish Seismic Code and verified against wind loads estimated using Istanbul Wind Code. Seismic loads govern the design since Istanbul is located in a highly seismic region of Turkey. Then, maximum top floor along-wind and across-wind accelerations are estimated using various structural codes and design guidelines. Comfort conditions are assessed considering maximum accelerations of the top floor of the building due to wind excitation. It is shown that while different codes give different values of maximum accelerations, same or similar comfort condition is achieved.

Keywords: tall building, comfort condition, wind loading

### 1 INTRODUCTION

Economic and social developments increase the need of dwelling. The need of dwelling makes tall building compulsory especially in crowded cities. Wind is an important parameter in the design of tall buildings. During the design of the structure, some problems may arise due to the wind. Comfort assessment due to wind excitation is an important problem in tall building design. Comfort in buildings is generally defined by occupants' reactions and perception of wind vibration of buildings. Comfort conditions are generally assessed by examining accelerations of the building during wind excitation. Various structural codes provide formulae for estimation of maximum wind accelerations of top floor of a tall building. There is generally no accepted international standard for comfort criteria in tall buildings even tough accelerations are to be estimated accurately, rather there are several studies and resulting recommendations for this purpose.

Wind is considered in the x-direction and along-wind acceleration and across-wind accelerations are estimated for the sample building. For this purpose, structural codes, ASCE7-10, AS/NZS 1170.2, IS875, EUROCODE1-04, NBCC, AIJ and EIT are used. The main reason of selecting a 31-storey building is that there are many approximately 30-storey buildings in Istanbul, Turkey. The aim of this study was to determine the acceleration of a tall building and assess comfort condition under wind loads.



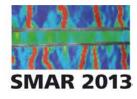
# 2 WIND ACCELERATION AND COMFORT CRITERIA

#### 2.1 Wind acceleration and code requirement

Important parameters for finding wind accelerations of tall buildings are as follows:

- $\checkmark$  The location of the building
- ✓ Dimensions of the building
- ✓ Height of the structure
- $\checkmark$  Wind speed
- ✓ Wind direction
- ✓ Structural weight
- ✓ Damping of the structure

There are various differences in the calculation of the wind accelerations in various structural codes. The reason for this is that different structural codes are applicable to different countries and regions. Vibration of tall buildings due to wind can be characterized by along-wind, across-wind and torsional vibration. Most of the structural codes provide along-wind and across-wind acceleration values. However, torsional acceleration can also be found in AIJ code. Structural damping ratio is important for the acceleration of the wind. This coefficient may differ between codes. Damping ratio values used in this study are shown in Table-1.


Table 1. Damping ratio values

| Code          | Damping ratio |  |  |
|---------------|---------------|--|--|
| ASCE7-10      | 0.005         |  |  |
| AS/NZS 1170.2 | 0.005         |  |  |
| IS875         | 0.002         |  |  |
| EUROCODE 1-04 | 0.003         |  |  |
| NBCC          | 0.005         |  |  |
| AIJ           | 0.005         |  |  |
| EIT           | 0.005         |  |  |

EUROCODES 1-04, AS/NZS 1170.2 codes are used for the buildings at a height of less than 200 m. Turbulence intensity coefficient is similar in all codes. This coefficient is related to terrain category and building height. Along-wind acceleration is related to displacements due to the wind according to NBCC2005 and EIT codes.

### 2.2 Comfort Criteria for Tall Buildings

Previous studies investigated the effects of movements in the frequency range 0-1 Hz on humans. Human response to building vibration is generally very complicated. Various research show that psychology of people should be taken into account as an important parameter in building vibration assessment. There is no generally accepted international standard for comfort criteria in tall buildings. Furthermore, there are significant differences between the commonly accepted comfort criteria since these are adopted for different region and people from different cultures. Human perception levels and acceleration values used in this study are shown in Table-2 and Table-3.



| LEVEL     | ACCELERATION<br>(m/s <sup>2</sup> ) | EFFECT                                   |
|-----------|-------------------------------------|------------------------------------------|
| 1         | < 0.05                              | Humans cannot perceive motion            |
|           |                                     | a) Sensitive people can perceive motion; |
| 2         | 0.05 - 0.1                          | b) Hanging objects may move              |
|           |                                     | slightly                                 |
|           |                                     | a) Majority of people will               |
|           |                                     | perceive motion;                         |
|           |                                     | b) Level of motion may affect            |
| 3 0.1-0.2 | 01025                               | desk work:                               |
|           | 0.1-0.25                            | c) Long - term exposure may              |
|           |                                     | produce motion sickness                  |
|           |                                     | a) Desk work becomes difficult           |
| 4         | 0.25.0.4                            | or almost impossible;                    |
|           | 0.25-0.4                            | b) Ambulation still possible             |

 Table 2. Human perception levels [11]

Table 3. Human perception levels[12]

| Deals                |                |
|----------------------|----------------|
| Peak<br>Acceleration | Comfort Limit  |
| <0.5%g               | Not            |
|                      | Perceptible    |
| 05150/-              | Threshold of   |
| 0.5 -1.5 %g          | Perceptibility |
| 1.5 -5 %g            | Annoying       |
| 5 15 0/ ~            | Very           |
| 5 -15 %g             | Annoying       |
| >15 %g               | Intolerable    |
|                      |                |

# 3 EXAMINATION OF REINFORCED CONCRETE BUILDING

The building used in this study has 31 stories, where floor height is 3.6 m and the total building height is 111.6 m. The layout dimensions of the RC tall building are 35.5 m by 28.9 m direction and it is symmetrical in plan in two directions with an approximately 1026 m<sup>2</sup> floor area. The structural system of building is a dual system of shear walls and moment frames. The thickness of core walls changes between 55 cm and 50 cm. The thickness of the floor slabs is 18cm. The material classes for concrete and reinforcement are C60 and S420, respectively. Live loads are assumed to be 5.0 kN/m<sup>2</sup> and 2.0 kN/m<sup>2</sup>. Dead loads are assumed to be 6.50 kN/m<sup>2</sup>.

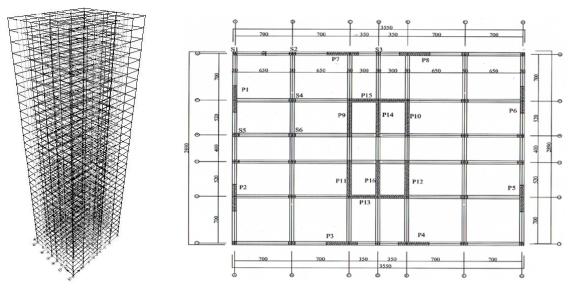
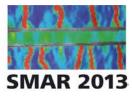




Figure 1. 3D model and typical storey layout of the tall building considered

Second Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures



# 3.1 Modal and Earthquake Analysis

The building is analyzed by using software of ETABS. The first mode period  $T_x = 2.4663$  s and the second period  $T_y = 2.3781$  s. The first six period and mode shape direction of the structure are given in Table 3. First three mode shape of structure are given in Figure 2.

Table 4. The first six modes

| Mode | Period | Direction |
|------|--------|-----------|
| 1    | 2.4663 | Х         |
| 2    | 2.3781 | Y         |
| 3    | 1.9239 | Torsional |
| 4    | 0.7002 | Y         |
| 5    | 0.6822 | Х         |
| 6    | 0.6137 | Torsional |
|      |        |           |

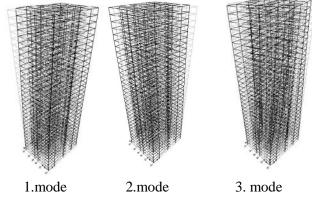



Figure 2. The first three mode shapes of building

The design of the building is carried out by considering requirements of Turkish Seismic Code 2007. The following parameters are used to calculate the equivalent static seismic loads: The effective ground acceleration coefficient  $A_0$ =0.40 (first seismic zone), the building importance factor I = 1.0, the spectrum characteristic periods  $T_A = 0.10s$  and  $T_B = 0.30s$  (local site class Z1), the live load participation factor n = 0.3, and the structural behavior factor R=7. According to the equivalent seismic load method given in 2007 Turkish Seismic Code, the base shear forces are in x and y-directions,  $V_{tx}$  =13488.84 kN and  $V_{ty}$ =13926.32 kN, respectively. Minimum base shear force is  $V_{t,min}$ =20415.5 kN. Therefore,  $V_{t,min}$  is used in both directions. By using the mode superposition method, the base shear forces are obtained as  $V_{tx}$ =12991.97 kN and  $V_{ty}$ =13765.83 kN, in x and y-directions, respectively. It should be clarified that no structural analysis is performed when estimating the accelerations. Accelerations are estimated from the formulas given in the codes. However, analysis is performed to estimate roof displacements under wind loads, which is required for estimation of accelerations in some of the codes. Also, modal analysis is performed for estimation of periods.

#### 3.2 Wind analysis

Wind is considered in the x-direction (Figure 3).

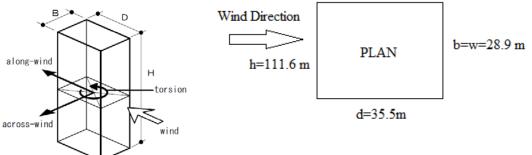



Figure 3. Definition of wind direction



The following expression has been proposed for wind frequency applications. (Zhou and Kareem 2001, Zhou, Kijewski, and Kareem 2002);

$$f_{n1} = \frac{150}{H} = 0.41 \text{ Hz}$$
 where H is the height of the structure (feet) (1)

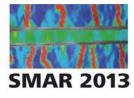

The values obtained from analysis and the formulae are consistent. The frequency values obtained from the formula are used in the numerical calculations. The time duration and return periods for various codes are given in Table 6. As it is seen, the return period is generally 50 year. The wind speeds, peak accelerations and displacement limits are given in Table 7 for a number of codes, where H is the height of the structure (m) and  $h_i$  is the story height (m). The peak acceleration and comfort criteria are shown in Table 8. Estimation of accelerations are based on wind speeds with a return period of 10 years. Conversion of values from 50 years return period to 10 years return period is based on the formulas given by the codes respectively.

Table 6. Time duration and return period

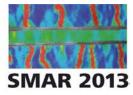
| Time Duration | Basic Wind Speed  |       | CODE          | Time Duration | RP (year) |
|---------------|-------------------|-------|---------------|---------------|-----------|
| 3 second      | in Istanbul (m/s) | İYBRY |               | 10 minute     | 50        |
| 10 minute     | 36.19<br>25       |       | ASCE7-10      | 3 second      | 50        |
| 1 hours       | 23.83             |       | AS/NZS 1170.2 | 3 second      | 50        |
| 1 110015      | 20.00             |       | IS875         | 3 second      | 50        |
|               |                   |       | EUROCODE 1-04 | 10 minute     | 50        |
|               |                   |       | NBCC          | 1 hour        | 50        |
|               |                   |       | AIJ           | 10 minute     | 50-100    |
|               |                   |       | EIT           | 1 hour        | 50        |

Table 7.Peak acceleration, maximum displacement and lateral drift on the structure

| CODE             | Basic<br>Wind<br>Speed | Design<br>Wind<br>Speed | Wind<br>Speed for<br>Acc. | wind                | Across<br>Wind<br>Peak Acc | Max.<br>Disp. | Disp.<br>Limit | $(\delta_i)_{maks}\!/h_i$ | Drift<br>limit |
|------------------|------------------------|-------------------------|---------------------------|---------------------|----------------------------|---------------|----------------|---------------------------|----------------|
|                  | (m/s)                  | (m/s)                   | (m/s)                     | (m/s <sup>2</sup> ) | (m/s <sup>2</sup> )        | (m)           | (m)            |                           |                |
| ASCE7-10         | 36.19                  | 31.53                   | 28.43                     | 0.025               | -                          | 0.012         | H/1000=0.11    | 0.0001                    | 0.002          |
| AS/NZS<br>1170.2 | 36.19                  | 38.57                   | 34.79                     | 0.022               | 0.121                      | 0.015         | H/1000=0.11    | 0.0002                    | 0.002          |
| NBCC             | 23.81                  | 24.08                   | 39.49                     | 0.018               | 0.095                      | 0.019         | H/1000=0.11    | 0.0002                    | 0.002          |
| IS875            | 36.19                  | 45.98                   | 22.19                     | 0.043               | -                          | _             |                |                           |                |
| EUROCODE         |                        |                         |                           |                     |                            |               |                |                           |                |
| 1-04             | 25                     | 24.59                   | 21.40                     | 0.034               | 0.027                      |               |                |                           |                |
| AIJ              | 26.73                  | 22.97                   |                           | 0.031               | 0.049                      | _             |                |                           |                |
| EIT              | 23.81                  | 24.16                   | 21.80                     | 0.032               | 0.048                      | _             |                |                           |                |



| CODE             | Peak Acc. (m/s <sup>2</sup> ) | According to Table 2                                                                                                                                                       | Acc. to Table3                 |
|------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| ASCE7-10         | 0.025                         | <ul><li>a) Sensitive people can perceive motion;</li><li>b) Hanging objects may move slightly</li></ul>                                                                    | Not Perceptable                |
| AS/NZS<br>1170.2 | 0.121                         | <ul><li>a) Majority of people will perceive motion;</li><li>b) Level of motion may affect desk work:</li><li>c) Long - term exposure may produce motion sickness</li></ul> | Threshold of Perceptibility    |
| IS875            | 0.095                         | <ul><li>a) Majority of people will perceive motion;</li><li>b) Level of motion may affect desk work:</li><li>c) Long - term exposure may produce motion sickness</li></ul> | Threshold of<br>Perceptibility |
| EUROCODE<br>1-04 | 0.043                         | <ul><li>a) Sensitive people can perceive motion;</li><li>b) Hanging objects may move slightly</li></ul>                                                                    | Not Perceptible                |
| NBCC             | 0.034                         | <ul><li>a) Sensitive people can perceive motion;</li><li>b) Hanging objects may move slightly</li></ul>                                                                    | Not Perceptible                |
| AIJ              | 0.049                         | <ul><li>a) Sensitive people can perceive motion;</li><li>b) Hanging objects may move slightly</li></ul>                                                                    | Not Perceptible                |
| EIT              | 0.048                         | <ul><li>a) Sensitive people can perceive motion;</li><li>b) Hanging objects may move slightly</li></ul>                                                                    | Not Perceptible                |
| MEAN             | 0.059                         | <ul><li>a) Sensitive people can perceive motion;</li><li>b) Hanging objects may move slightly</li></ul>                                                                    | Threshold of<br>Perceptibility |


Table 8. Peak acceleration and comfort criteria

# 4 CONCLUSION AND OBSERVATIONS

This paper has focused on serviceability limit states of tall buildings due to wind acceleration. Wind acceleration was investigated according to the different codes. The results obtained are summarized below:

- There are no single occupant comfort serviceability criteria that is accepted internationally and enforced in various codes. Structural codes of different countries have different methods of assessing serviceability, and each these codes may yield significantly different results.
- It has been determined that the wind acceleration in the along-wind direction is less than the acceleration in the across-wind direction of the wind for almost all codes
- It is observed that accelerations of the building is inversely proportional with the damping ratio of the structure according to the formulas given in all codes. This is important in the sense improving the damping may directly reduce the accelerations and may be a convenient solution for mitigation of the accelerations.
- It is observed that an increase in the weight of the structure will reduce the displacement caused by the wind and may result in a reduction in the acceleration of the structure according to the formulas given in the codes. On the other hand, if increase in the mass changes the period of the structure significantly, then above conclusion may not be true.
- Human psychology, culture and other social characteristics are very important for comfort criteria. It is considered that criteria given in one country may not be directly applicable in another country due to differences in social conditions.

Second Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures



#### 5 REFERENCES

- Smith. S.B., and Coull. A. (1991). Tall Buildings Structures: Analysis and Design, Wiley Publication, United States of America.
- IYBDY (2008). Tall Buildings Earthquake Code in Istanbul ,Department of Earthquake Engineering Bogazici University Kandilli Observatory and Earthquake Research Institute, Istanbul.
- Bursa Metropolitan Municipality Reconstruction Code (2012). Department of Housing and Urban Development in Bursa, Bursa.
- Izmir Metropolitan Municipality Reconstruction Code (2002). Department of Housing and Urban Development in Izmir, Izmir.

Celep. Z. ve Kumbasar. N. (2001). Reinforced Concrete Structures, Beta Publishing, Istanbul.

- Ardıç. H. (1993). Analysis of Reinforced Concrete Building Structures Structural Systems and Tube Structural System Building Structures Dynamic Calculation, Graduate School Of Science, Engineering And Technology of Istanbul Technical University, Istanbul.
- Keldi. H. İ. (2005). Creating and Cost Comparison of Alternative Systems with Tall Buildings,, Graduate School Of Science, Engineering And Technology of Yıldız Technical University, Istanbul.
- TS 498 (1997). Design Loads For Buildings, Turkish Standards Institute, Ankara.
- Yılmaz. F. (1998). Structural System Efficiency in Tall Buildings, Graduate School Of Science, Engineering And Technology of Istanbul Technical University, Istanbul.
- Kumar. D.B., and Swami. B.L.P. (2010). Wind Effects on Tall Buildings Frames-Influence of Dynamic Parameters, Indian Journal of Science and Technology, Indian.
- Mendis. P., Ngo. T., Haritos. N., Hiro. A., Samali. B. and Cheung J. (2007). Wind Loading on Tall Building, Electronic Journal of Structural Engineering, Australia.
- Griffis. G.L. (2003). Serviceability Limit States Under Wind Load, American Institute of Steel Construction, United States of America.
- Menzel H., Pichler D., Geier R., and Tanaka H. (2001). Socio-Economical and Health Impact of Vibration on European Citizen, Competitive and Sustainable Growth Program.
- IYBRY (2008). Tall Buildings Wind Code in Istanbul, Department of Earthquake Engineering Bogazici University Kandilli Observatory and Earthquake Research Institute, Istanbul.
- ASCE7-10 (2010). Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, United States of America.
- AS/NZS 1170.2 (2002). Structural Design Actions Part 2: Wind Actions, Australian / New Zealand Standard, Australia.
- IS:875 (2004). Wind Loads on Buildings and Structures-Proposed Draft and Commentary (Part3), Indian Institute of Technology Roorkee, Indian
- BS-EN 1991-1-4 (2005). Eurocode 1: Actions on Structures, Part 1-4: General Actions- Wind Actions, European Standard
- NBCC (2005). National Building Code of Canada, Associate Committee on the National Building Code, National Research Council of Canada, Ottawa.
- AIJ-RLB (2004). Recommendations on Loads for Buildings, Architectural Institute of Japan, Maruzen.
- EIT 1018-46 (2003).Wind Loading Code for Building Design in Thai, Engineering Institute of Thailand, Thailand
- DBYYHY (2007). Turkish Earthquake Resistant Code, Ministry of Public Works and Settlement Government of Republic of Turkey Ankara.
- TS 500 (2000). Requirements for Construction of Reinforced Concrete Structures, Turkish Standards Institute, Ankara.